Архив за месяц: Июнь 2019

Ленточный фундамент для каркасного дома.

«Ленточный фундамент пошире, повыше и на глубину промерзания» — такие советы часто приходится слышать застройщику. 
В большинстве случаев, для мелкозаглубленного ленточного фундамента (МЗЛФ) и незаглубленного ленточного фундамента (НЗЛФ) достаточно высоты ленты 1/15 от длины дома (например 60 см для дома 9×9м). А при непросадочных грунтах основания составляющих 85% грунтов в нашей стране, за исключением южных засушливых районов и болотистой местности, устраивать глубоко заглубленный фундамент нет необходимости. Типичное заблуждение — чем выше лента МЗЛФ, тем лучше. Однако неоправданное увеличение высоты ленты приводит к значительному увеличению жёсткости и как следствие – необходимости увеличивать армирование. Например, НЗЛФ высотой 40 см под каркасный дом обладает очень значительной гибкостью, поэтому легко «проглотит» значительное пучение основания. Каркасный дом также является относительно гибкой конструкцией, т.е. способен выдержать большие относительные деформации, чем к примеру кирпичный или газобетонный. Величина предельных относительных деформаций при расчёте фундамента влияет на его конструктив. Поэтому применение такого гибкого фундамента для данного типа здания является наиболее оправданным вариантом, поскольку позволяет получить сбалансированную в плане гибкости конструкцию, которой не страшна относительно высокая деформация морозного пучения. Если же ленту 60 см заменить лентой высотой 120 см, то мы получим значительно более жёсткий фундамент, который под действием сил морозного пучения с одной стороны, и нагрузки от здания с другой, уже не изогнётся без разрушений, а будет «стоять до последнего», пока не треснет. Увеличив высоту такой ленты, мы своими собственными руками создаём колоссальные моменты в конструкции, которые надо компенсировать увеличением армирования (vk.com/postroim_svoi_dom). И такое неоправданное увеличение нагрузок происходит просто «на пустом месте», из-за ошибок в проектировании и желания «сделать повыше». 


Если же указанных 60 см высоты фундамента не хватает, можно сделать цоколь в виде ещё одной бетонной монолитной ленты, залитой поверх основной и разделённой от первой слоем гидроизоляции. Гидроизоляция в данном случае кроме своей основной функции будет обеспечивать скольжение двух лент относительно друг друга при изгибе. Это будет вариант составной фундаментной ленты, высокой, но без значительной потери гибкости. Армирование дополнительной ленты может быть выполнено в меньшей степени, чем основной.
Ширина ленточного фундамента под каркасный дом.
При проектировании ленточных фундаментов в пучинистых грунтах, строительные правила предусматривают минимальную ширину мелкозаглубленных и заглубленных ленточных фундаментов в 25 см. Если учесть что нагрузка каркасного дома не превышает 2,5 т/м.п., ширина ЛФ в 25 см проходит по несущей способности большинства грунтов, за исключением просадочных. В случае с незаглубленной лентой, ее минимальная ширина может быть определена расчетом. 
Чтобы однозначно определить, какая ширина ленточного фундамента будет достаточной в конкретном частном случае, необходимо выполнить соответствующий расчет: 
Пример расчета ширины ленточного фундамента на несущую способность грунтов основания я написал ранее, в сообществе построим свой дом — //m.vk.com/wall-72891995_288

#Ленточный#фундамент для #каркасного#дома
#Построим#свой#дом


Армирование ленточного фундамента

Ленточный фундамент под действием неравномерных осадок, просадок грунта основания и сил морозного пучения подвергается воздействию растягивающих и сжимающих сил. Чтобы придать фундаменту дополнительную прочность и исключить возможность его деформации, при работе на изгиб, необходимо выполнить продольное армирование фундамента в его верхней и нижней части поперечной плоскости, и поперечное армирование получив в результате металлический каркас.

Металлический каркас состоит из двух горизонтальных ярусов продольной арматуры, соединенных между собой поперечной арматурой. Последняя фиксирует продольные ярусы.

Отдельные стержни арматуры соединяются вязальной проволокой и крючком. Перехлест арматуры устраивают на величину 50d при «вязке» и на 8-10d при сварном соединении, при условии что арматуру можно сваривать (см букву «С» в спецификации, например А500с)
Металлический каркас собирается из следующих видов арматуры:
рабочей продольной арматуры класса А-III с периодическим профилем;
вспомогательной поперечной арматуры класса А-l, A-ll, А-lll или Вр-I ;
Минимальный процент продольного армирования железобетонных конструкций, работающих на изгиб — 0,1% от площади поперечного сечения ленты. При этом в расчёт включается только арматура в верхнем и нижнем поясе армирования, при наличии дополнительных стержней, защищающих конструкцию от возникновения наклонных трещин, минимальный процент армирования принимается 0,2%, пример расчета ленточного фундамента, см запись в группе построим свой дом (//vk.com/wall-72891995_40) Дополнительные продольные стрежни водятся для защиты от наклонных трещин при высоте сечения более 700 мм (СП 52.101-2003). Располагать продольную арматуру нужно как можно ближе к верхнему и нижнему краю ленты, с учётом требований по минимальному защитному слою бетона в 30 и 70 мм.

Поперечная арматура при типе соединения с помощью сварки должна иметь диаметр не менее 6 мм при высоте конструкции до 800 мм и не менее 8мм при высоте свыше 800 мм. Максимальный шаг поперечной арматуры не должен превышать 600 мм или 3/4 высоты сечения ленты. Поперечная арматура огибает продольную снаружи, образуя замкнутый прямоугольник.

Согласно п. 5.14 Пособия к СП 52-101-2003, при ширине ленточного фундамента более 150 мм необходимо устанавливать не менее 2-х стержней продольной арматуры. При этом, максимальное расстояние между стержнями не должно превышать 400 мм.
Углы и пересечения фундамента необходимо усилить Г-образными или П-образными стержнями с перехлестом в 50d.

#Армирование#ленточного#фундамента
Построим Свой Дом


Расчёт стропильной системы двухскатной крыши.

Грамотный расчёт стропильной системы двухскатной крыши — обязательное условие для обеспечения 100% надежности и долговечности дома в целом.

Любая непосильная нагрузка или неравномерное распределение веса кровли могут стать причиной повреждения или даже разрушения здания.
Каждый проект дома предусматривает индивидуальный план организации всей крыши на основе строительных норм и особенностей конкретного дома.

В первую очередь определяют уклон скатов, поскольку, скажем, в случае минимальных углов, 10–15° или наоборот при уклоне более 45°, действуют некоторые ограничения на выбор кровельного материала. Стропильная система практически проектируется на уже выбранное покрытие.

Хотя с увеличением уклона материальные затраты растут, при этом также улучшаются эксплуатационные характеристики – «крутая» крыша может сама очищаться от снега. 
Еще одним ограничителем наклона являются природные явления. Особой точности требует связанный с ними учет параметров крыши, например, снеговые и ветровые действия.

Далее приступают к определению общего веса пирога для кровли, который включает обрешетку, утепление, а также кровельное покрытие.
После определения веса пирога кровли, определяют значение снеговой и ветровой нагрузки. Далее расчитывают стропильную систему на прочность и прогиб.
Заключительным этапом является расчёт пиломатериалов и подготовка инструкции по креплению кровли. Для примера приведем расчёт стропильной системы двухскатной крыши из записи сообщества построим свой дом .


Пример расчёта: 


Требуется рассчитать стропильную систему крыши для дома, в Псковской области.
Расстояние между центрами опирания стропил на мауэрлат – L = 6 м.
Стропила из деревянных балок сечением 15×5 см , с шагом Ш= 1,2 м.
Угол наклона кровли a=45°.
допустимый прогиб 1/200
Нагрузки, действующие на крышу.
1. Снеговые нагрузки.
2. Ветровые нагрузки.
3. Вес кровельного материала
4. Вес обрешётки и стропил.
1. Снеговые нагрузки.
Для расчёта снеговой нагрузки воспользуемся формулой:
S=µ×Sg
где,
S — искомая величина снеговой нагрузки, кг/м²
Sg — нормативная снеговая нагрузка, кг/м².
µ — коэффициент, зависящий от угла наклона крыши α, безразмерная величина.
µ = 1; при α ≤ 30°,
µ = 0,0333×(60-α) ; при 30° < α < 60°,
µ = 0; при α ≥ 60°.

По карте 1 обязательного приложения 5 СНиП 2.01.07-85 «Нагрузки и воздействия» определяем Sg — нормативную снеговую нагрузку для Псковской области vk.com/postroim_svoi_dom


Sg=180 кг/м²
Так как 30° < α < 60°, расчёт µ произведём по формуле µ = 0,033×(60-α).
µ = 0,033×(60-45)= 0,495
S=Sg×µ =180×0,495=89,1 кг/м².

2. Ветровые нагрузки.
Если угол наклона крыши α > 30°, то из-за её парусности ветер давит на один из скатов и стремится её опрокинуть.
Если угол α < 30°, то подъёмная аэродинамическая сила, возникающая при огибании её ветром, а также турбулентности под свесами стремятся эту крышу приподнять.
Согласно СНиП 2.01.07-85 «Нагрузки и воздействия» , нормативное значение средней составляющей ветровой нагрузки Wm определяем по формуле:
Wm=Wo×K×C; где,
Wo — нормативное значение ветрового давления.
K — коэффициент, учитывающий изменение ветрового давления, в зависимости от высоты здания и характера местности.


C — аэродинамический коэффициент, в зависимости от конфигурации здания и крыши может принимать значения от минус 1,8 (α < 30°) до плюс 0,8 (α > 30°). 
Чем тяжелее крыша, тем она более устойчива против ветровой нагрузки.
По карте 3 приложения 5 в « СНиП 2.01.07-85» находим, что Псковская область относится к первому ветровому району Wo= 23 кг/м²


коэффициент K= 0,75
Значение аэродинамического коэффициента C принимаем равным 0,8
Wm= 23×0,75×0,8 = 13,8 кг/м².
3. Вес кровельного материала.
Различные виды кровли имеют следующий вес:
1. Шифер — 19 кг/м² ( 8-ми волновый шифер, при толщине 5,8 мм и укладке с нахлестом 25см и смещением на 1,5 волны;
2. Металлочерепица, профнастил — 4 — 5 кг/м²;
3. Ондулин — 4 — 6 кг/м²;
4. Битумная черепица 8 — 12 кг/м²;
5. Керамическая черепица 35 — 50кг/м²;
4. Вес обрешётки и стропил.
Вес обрешётки = 510 кг/м³×0,1м×0,05м×3шт/1м² = 7,65 кг/м²; 
Вес стропил = 510 кг/м³×0,15м×0,05м/1,2м² = 3,2 кг/м²
Посчитаем нагрузку на стропильную систему при использовании шифера:
Снеговые нагрузки – 89,1 кг/м²
Ветровые нагрузки – 13,8 кг/м²
Вес кровельного материала — 19 кг/м²
Вес обрешётки — 7,7 кг/м²
см запись расчет обрешетки — vk.com/wall-72891995_213
Вес стропил — 3,2 кг/м²
Итого: q расч = 132,8 кг/м²
Проекция распределенной нагрузки на ось перпендикулярную стропильной ноге q=q расч×cosa= 132,8×0,707= 93,9 кг/м²
M_max=(q×Ш×(L/2)²)/8=(93,9×1,2×3²)/8=125,82 кгс∙м=12582 кгс∙см
определяем требуемый момент сопротивления деревянной стропильной ноги
Wтреб = Мmax / R,
где R -расчетное сопротивление древесины хвойных пород на изгиб 
R = 14 МПа = 142,71 кгс/см²
Wтреб = 12582 / 142,71 = 88,2 см³ 
Wбалки ≥ Wтреб 
Wбалки = b x h² / 6 = 5×15²/6= 187,5 см³ ≥ 88,2см³
Условие выполняется.
Определение прогиба балки.
f=(5×q×Ш×(L/2)⁴)/(384×E×J)
где q — нагрузка на балку
L =6 м — расстояние между центрами опирания стропил на мауэрлат
Е — Модуль упругости древесины, при расчете по предельным состояниям второй группы следует принимать равным вдоль волокон Е = 10 000 МПа (100 000 кгс/см2 или 10х10^8 кгс/м²)
J — момент инерции, для доски прямоугольного сечения
J = b x h³ / 12 = 5 х 15³ / 12 = 1406,25 см⁴
f = 5 х 93,9 х 1,2 х 3⁴ / 384 х 10 х 10^8 х1406,25 х 10^-8 = 0,0084 м или 0,84 см.
допустимый прогиб 
f доп=L/200=300/200=1,5см≥0,84см
Условие по прогибу выполняется.
Значение распирающей нагрузки q (х).
Проекция распределенной нагрузки на ось параллельную стропильной ноге 
q(х)=q расч×sin(a)= 132,8×0,707= 93,9 кг/м²
q (х) ×Ш = 93,9×1,2= 112,7 кг – крепление каждой (кроме крайних) стропильной ноги к мауэрлату должно выдерживать нагрузку на срез — 112,7 кг.

#Расчет#стропильной#системы#двухскатной#крыши

#Построим#свой#дом


Расчёт чердачного перекрытия.

Исходные данные:
Чердачное перекрытие из деревянных балок с поперечным сечением (высота×ширина) — 20×10 см, и шагом Ш = 0,58 м (шаг выбран под стандартный размер/ширину утеплителя/минваты — 0,6 м).
Длина пролета L = 6 м
допустимый прогиб fдоп = 1/200
Общая распределённая нагрузка на перекрытие — 
q = q’ + q(вр) = 55 + 91 = 146 кг/м²,
где q’ — собственный вес чердачного перекрытия (балки+черновой потолок+утеплитель+внутр. отделка чп)
q’ = 510кг/м³×0,2м×0,1м/0,58м + 510кг/м³×0,025м + 30кг/м³×0,2м = 17,6 +12,75 + 6 = 36,35 кг/м² + вес внутренней отделки чердачного перекрытия ≈ 55кг/м²
По данным из СНиП 2.01.07-85 «Нагрузки и воздействия», распределенная нагрузка для чердачного перекрытия — q(вр)=70кгс/м² х 1,3 = 91 кгс/м²,
где 70кгс/м² — нормативное значение нагрузки на чердачное перекрытие;
1,3 — коэффициент надежности при q(вр) ≤ 200кг/м².

Максимальный изгибающий момент по центру чердачного перекрытия — 
M (max) = q(пог)×L²/8 = 85×6²/8 = 382,5 кгс•м= 38250 кгс•см
qпог = q×Ш = 146×0,58= 85 кг•м
определяем требуемый момент сопротивления деревянной балки
Wтреб = Мmax / R,
где R -расчетное сопротивление древесины хвойных пород на изгиб (vk.com/wall-72891995_334)
R = 14 МПа = 142,71 кгс/см²
Wтреб = 38250/142,71 = 268,02 см³ 
Wбалки ≥ Wтреб 
Wбалки = b x h² / 6 = 10×20²/6= 666,67 см³ ≥ 268,02 см³,
b,h — см предыдущие расчеты в группе построим свой дом.
Условие по прочности чердачного перекрытия выполняется.
Определение прогиба балки.
f=5q(пог)×L⁴/384EJ,
где q — нагрузка на балку
L — расстояние между несущими стенами (длина пролёта)
Е — Модуль упругости древесины, при расчете по предельным состояниям второй группы следует принимать равным вдоль волокон Е = 10 000 МПа (100 000 кгс/см2 или 10х10^8 кгс/м²)
J — момент инерции, для доски прямоугольного сечения
J = b×h³ / 12 = 10×20³ / 12 = 6666,67 см4,
где b,h — те же обозначения что и в моих предыдущих расчётах (//vk.com/wall-72891995_213)
f = 5×85×6⁴/ 384×10×10^8×6666,67×10-8 = 0,021 м или 2,1 см.

допустимый прогиб f доп = L/200 = 600/200 = 3см ≥ 2,1см.
Условие по прогибу выполняется.

Определение прогиба балки чердачного перекрытия от точечной нагрузки P = 200 кг приложенной к балке по середине пролёта.
f(max) = P∙L³/48EJ,
J = b × h³ / 12 = 10 × 20³ / 12 = 6666,67 см4
f = 200 кг × (6м)³ / 48 × 10 × 10^8 кг/м² ×6666,67 × 10-8 м⁴= 0,013 м или 1,3 см.

#Расчет#чердачного#перекрытия

#Построим#свой#дом


Расчёт междуэтажного деревянного перекрытия.

Исходные данные:
Междуэтажное перекрытие из деревянных балок с поперечным сечением (высота×ширина) — 25×5 см (балки перекрытия сверху и снизу фиксируются половой и потолочной доской , во избежание их скручивания).
Шаг балок — Ш = 0,58 м (шаг выбран под ширину минераловатного утеплителя — 0,6 м).
Длина пролета — L = 5,5 м
допустимый прогиб — fдоп = 1/200
Общая распределённая нагрузка на перекрытие — 
q = q’ + q(вр) = 50 + 195 = 245 кг/м²,
где q’ — собственный вес междуэтажного деревянного перекрытия (пол+балки+черновой потолок+звукоизоляция +внутр. отделка чп)
q’ = 510кг/м³×0,25м×0,05м/0,58м + 510кг/м³×(0,04+0,025)м + 30кг/м³×0,05м = 11 +33,15 + 1,5 = 45,65 кг/м² + вес внутренней отделки междуэтажного перекрытия ≈ 50кг/м²
По данным из СНиП 2.01.07-85 «Нагрузки и воздействия», распределенная нагрузка на деревянное перекрытие для жилых зданий — q(вр)=150кгс/м² х 1,3 = 195 кгс/м²,
где 150кгс/м² — нормативное значение нагрузки на междуэтажное перекрытие; 
Если по деревянным полам будет выполнена стяжка, тяжелые перегородки, устанавливаться чугунные ванны, с каменной плитой и другие тяжелые предметы, необходимо добавить эти нагрузки к нормативному значению и произвести отдельный расчет.
1,3 — коэффициент надежности при q(вр) ≤ 200кг/м².

Максимальный изгибающий момент по центру междуэтажного деревянного перекрытия — 
M (max) = q(пог)×L²/8 = 142,1×5,5²/8 = 537,32 кгс•м= 53732 кгс•см
qпог = q×Ш = 245×0,58= 142,1 кг•м
определяем требуемый момент сопротивления деревянной балки
Wтреб = Мmax / R×Кнэс,
где R -расчетное сопротивление древесины хвойных пород на изгиб (vk.com/wall-72891995_334)
R = 14 МПа = 142,71 кгс/см²,
Кнэс= 0,9 –коэффициент надежности на эксплуатационный срок 50-100лет; Кнэс=1,0 (до 50 лет); Кнэс=0,8 (>100лет)
Wтреб = 53732/142,71×0,9 = 418,34 см³ 
Wбалки ≥ Wтреб 
Wбалки = b x h² / 6 = 5×25²/6= 520,83 см³ ≥ 418,34 см³,
b,h — см предыдущие расчеты в группе построим свой дом.
Условие по прочности чердачного перекрытия выполняется.
Определение прогиба балки.
f=5q(пог)×L⁴/384EJ,
где q — нагрузка на балку
L — расстояние между несущими стенами (длина пролёта)
Е — Модуль упругости древесины, при расчете по предельным состояниям второй группы следует принимать равным вдоль волокон Е = 10 000 МПа (100 000 кгс/см2 или 10х10^8 кгс/м²)
J — момент инерции, для доски прямоугольного сечения
J = b×h³ / 12 = 5×25³ / 12 = 6510,42 см4,
где b,h — те же обозначения что и в моих предыдущих расчётах (//vk.com/wall-72891995_213)
f = 5×142,1×5,5⁴/ 384×10×10^8×6510,42×10-8 = 0,026 м или 2,6 см.

допустимый прогиб f доп = L/200 = 550/200 = 2,75см ≥ 2,6см.
Условие по прогибу выполняется.

Определение прогиба балки чердачного перекрытия от точечной нагрузки P = 200 кг приложенной к балке по середине пролёта.
f(max) = P∙L³/48EJ,
J = b × h³ / 12 = 5 × 25³ / 12 =6510,42 см4
f = 200 кг × (5,5м)³ / 48 × 10 × 10^8 кг/м² ×6510,42× 10-8 м⁴= 0,011 м или 1,1 см.

#Расчет#междуэтажного#деревянного#перекрытия

#Построим#свой#дом


Расчёт обрешётки.

Обрешётка — решётчатая конструкция или сплошной настил, устанавливаемый поверх стропильных ног. Является основанием для крепления кровельного материала и участвует в усилении пространственной структуры крыши. Может изготавливаться из дерева (доски, брусья) и металла (при металлической стропильной системе). 

Так как наиболее распространена деревянная стропильная система, обрешётка обычно состоит из отдельных брусков, досок уложенных на расстоянии в зависимости от применяемого кровельного материала обрешётка. Сплошная обрешетка с зазором до 1 см, подходит для мягких кровельных материалов, рулонных материалов. Также сплошной настил делается в местах стыков и пересечений скатов (на коньке, ребрах, ендовах, разжелобках) и по карнизным свесам. Под волнистый шифер достаточно будет по три бруска под каждый лист; под металлическую кровлю, натуральную черепицу шаг обрешетки составляет 230-400 мм. Важный момент: толщина нижней доски обрешетки должна быть толще остальных на величину толщины кровельного материала ( например на 5,8 мм для ГОСТовского шифера ). 
Размеры поперечного сечения обрешетки будут зависеть от шага стропил и снеговой нагрузки. Пример расчёта стропильной системы я приводил ранее в сообществе построим свой дом. 
Приведем для примера расчёт обрешетки из дерева хвойных пород (сосна) сечением 50*100 мм (толщина*ширина) под волнистый шифер, с шагом стропил (Шст) — 1,2м; 
шагом обрешетки (Шоб) — 0,6 м; угол наклона кровли — 45°. 
Нагрузки на обрешетку: 
1. Кровельный материал. Шифер — 19 кг/м² ( 8-ми волновый шифер, при толщине 5,8 мм и укладке с нахлестом 25см и смещением на 1,5 волны) 
2. Снеговая нагрузка : 
S=µ×Sg, где S — искомая величина снеговой нагрузки, кг/м² 
Sg = 180 кг/м² — нормативная снеговая нагрузка для 3 снегового района vk.com/wall-72891995_334 (г.Москва, г.Санкт-Петербург, г.Псков). 
µ — коэффициент, зависящий от угла наклона крыши α, безразмерная величина. 
µ = 1; при α ≤ 30°, 
µ = 0,0333×(60-α) ; при 30° < α < 60°, 
µ = 0; при α ≥ 60°. 
Так как 30° < α < 60°, расчёт µ произведём по формуле µ = 0,033×(60-α). 
µ = 0,033×(60-45)= 0,495 
S=Sg×µ =180×0,495=89,1 кг/м². 
Вес обрешётки = 510 кг/м³×0,1м×0,05м×3шт/1м² = 7,65 кг/м²; 
Посчитаем нагрузку на обрешетку: 
Снеговые нагрузки – 89,1 кг/м² 
Вес кровельного материала — 19 кг/м² 
Вес обрешётки — 7,7 кг/м² 
Итого: q расч = 115,8 кг/м² 
Проекция распределенной нагрузки на ось перпендикулярную плоскости кровли vk.com/postroim_svoi_dom q=q расч×cosa= 115,8×0,707= 82 кг/м². 
Формула для расчёта: 
b•h³ ≥ 3,125•q•Шоб•(Шст)⁴, 
где b — ширина обрешетки, см 
h — толщина обрешетки, см 
q — суммарная нагрузка на обрешетку, кг/м² 
Шоб — шаг обрешетки, м 
Шст — шаг стропил, м 
10•5³ ≥ 3,125•82•0,6•(1,2)⁴ 
1250 ≥ 318, как мы видим здесь 4-х кратный запас прочности. 
Рассчитаем при тех же исходных данных обрешетку 30*100 мм: 
10•3³ ≥ 318 
270 < 318, из неравенства видно что обрешетки сечением 30*100 мм будет недостаточно. 

#Расчёт#обрешётки
#Построим#свой#дом


Расчет армопояса.

Под междуэтажным перекрытием (за исключением монолитного ж/б перекрытия) в блочном/кирпичном доме необходимо устраивать армированный пояс из железобетона — армопояс. 
Основное предназначение армопояса под междуэтажным перекрытием — равномерно распределить нагрузку на стены. В некоторых частных случаях, армопояс может быть расположен непосредственно над оконными проемами и выполнять функции перемычек. Размеры поперечного сечения армопояса и диаметр рабочей арматуры должен быть определен по расчету ж/б конструкций. Диаметр вспомогательной арматуры, не должен быть менее 6 мм. 
Для примера рассчитаем частный случай, где армопояс расположен непосредственно над оконным проемом и выполняет функцию ж/б перемычки. 

Пример расчёта армопояса.

Требуется рассчитать армопояс 250×200мм (высота×ширина) над оконным проемом шириной 2,1м; под облегченные плиты перекрытия ПНО размером 6280х990х160мм и весом 1500 кг. 
Расчёт. 
М = qL²/8, 
где q — распределенная нагрузка на каждый метр армопояса 
q = собственный вес армопояса + нагрузка от плит ПНО + эксплуатационная нагрузка 
q = 2500кг/м³×1м×0,2м×0,25м +1500кг/2 +400 кг/м²×6м/2 = 125 кг/м + 750кг/м + 1200 кг/м = 2075 кг/м 
h0 = 21см — расстояние от центра сечения арматуры до края сжатой зоны ж/б перекрытия 
Расчётное сопротивление сжатию для бетона класса В20 — Rпр (Rb) = 117 кгс/см2 (11,5 МПа). 


b = 0,2 м , тоже значение что и в моих предыдущих расчетах в группе построим свой дом //vk.com/wall-72891995_213 Расчетное сопротивление растяжению для арматуры класса А-III — Ra = 3600 кгс/см2 (355 МПа). 


М = 2075×2,1²/8= 1143,84 кг•м 
А0 = M/b×h0²×Rпр = 1143,84 /(0,2×0,21²×1150000) = 0,1127 
По вспомогательной таблице для расчёта изгибаемых элементов прямоугольного сечения, армированных одиночной арматурой (согласно «Пособия по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)») находим η = 0,94 и ξ = 0,12 (vk.com/postroim_svoi_dom ). 

Требуемая площадь сечения арматуры: 
Fa = M/η×h0×Ra = 1143,84 /(0,94×0,21×36000000) = 0,000165 м2 = 1,61 см2. 
Основная рабочая арматура армопояса: 2 стержня Аlll d12мм, центр сечения арматуры находится на расстоянии 4 см от низа армопояса. 

Fa(факт)= 2,26см² 
Fa ≤ Fa(факт) 
1,61 см² < 2,26см² 
Условие выполняется. 

Коэффициент армирования — 
μ = Fa/b×h, 
Процент армирования — μ% = 100×μ 
μ% = 100×2,26/25×20 = 0,452 % 
Проверка соблюдения граничных условий: 
ξ ≤ ξR 
ξR = ξ0/{1+σа/400(1+ξ0/1,1)} 
ξ0 = a — 0.008Rпр, 
где Rпр принимается в МПа; коэффициент а = 0.85 для тяжелого бетона и а = 0.8 для бетона на пористых заполнителях. 
ξ0 = 0.85 — 0.008•11,5 = 0,758 
ξR = ξ0/{1+σа/400(1+ξ0/1,1)} 
ξR = 0.758/(1 + 365/400(1 + 0.758/1.1)) = 0,2984 
0,12 < 0,2984 
Граничное условие выполнено. 

Проверка прочности по касательным напряжениям.

Так как арматуру в верхнем слое и поперечное армирование в армопоясе (хомуты или вертикальные стержни) мы не предусматривали, то следует проверить прочность армопояса по касательным напряжениям: 

Qmax ≤ 2.5×Rbt×b×ho , 
где Qmax — максимальное значение поперечной силы (определяется по эпюре поперечных сил). При нашей расчетной схеме Qmax = ql/2 = 2075•2,1/2 = 2178,75 кг; 
Rbt — расчетное сопротивление бетона растяжению //vk.com/wall-72891995_272, для класса бетона B20 Rbt = 9,18 кгс/см2; 
2178,75 кг < 2,5×9,18×20×21= 9639 кг 
Q ≤ 1.5Rbt×b×h0²/с 
или 
Qmax ≤ 0.5Rbt×b×ho + 3ho×q , 
где Q — поперечная сила в конце наклонного сечения, начинающегося от опоры; значение с принимается не более сmax = 3ho. При нашей расчетной схеме значение Q на расстоянии 3×21 = 63 см или 0,63м от опоры составит Q = ql/2 — 0,63q = 2178,75 — 2075•0,63= 871,5кг; 
871,5 кг < 1.5•9,18•20•21²/63 = 1927 кг 

Условия прочности по касательным напряжениям выполняется и в этом случае расчёта поперечной арматуры по сечениям, наклонным к продольной оси, не требуется. Однако это вовсе не означает, что арматура в верхней части ж/б армопояса
и поперечная арматура совсем не нужны. Арматура верхнего пояса и поперечная арматура перераспределяет внутренние напряжения, а потому использование арматуры в верхнем поясе и поперечной арматуры необходимо , так как все возможные нагрузки и их сочетания предусмотреть невозможно. Диаметр стержней арматуры верхнего пояса и поперечной арматуры можно выбрать меньше диаметра рабочей арматуры. 

#Расчет#армопояса

#Построим#свой#дом


Расчёт монолитного перекрытия

Монолитное перекрытие из железобетона можно назвать самым надежным и универсальным с рядом преимуществ.

Перекрыть таким способом можно помещения практически любых габаритов. Единственное условие для перекрытия больших помещений – это необходимость в дополнительных опорах. Монолитные перекрытия обладают высокой звукоизоляцией – при своей сравнительно небольшой толщине они полностью подавляют все посторонние шумы.
Кроме того, вы экономите на отделочных работах. На монолитном ж/б перекрытии можно использовать практически любой тип чистового пола. Высокая несущая способность монолитного ж/б перекрытия обеспечивается арматурой, заложенной в нижней, растягивающейся зоне . Диаметр рабочей арматуры и ее шаг должен быть определен по расчету монолитного ж/б перекрытия . Диаметр вспомогательной арматуры , не должен быть менее 6 мм. 

Пример расчёта монолитного ж/б перекрытия.
Требуется рассчитать монолитное перекрытие толщиной 20 см в доме размером 6×9 м.
Расчёт. 
М = qL²/8,
где q — распределенная нагрузка на каждый метр монолитного перекрытия.
q = собственный вес монолитного перекрытия + эксплуатационная нагрузка
q = 400 кг/м²×1м + 2500кг/м³×1м×0,2м = 400кг/м + 500 кг/м = 900 кг/м
h0 — расстояние от центра сечения арматуры до края сжатой зоны ж/б перекрытия
Расчётное сопротивление сжатию для бетона класса В20 — Rпр (Rb) = 117 кгс/см2 (11,5 МПа).
b = 1 м , тоже значение что и в моих предыдущих расчетах в группе построим свой дом //vk.com/wall-72891995_213 Расчетное сопротивление растяжению для арматуры класса А-III — Ra = 3600 кгс/см2 (355 МПа).
М = 900×6²/8= 4050 кг•м
А0 = M/b×h0²×Rпр = 4050/(1×0,16²×1150000) = 0,138
По вспомогательной таблице к записи находим η = 0,925 и ξ = 0,15 (vk.com/postroim_svoi_dom ).
Для проектирования оптимальных по стоимости железобетонных изделий рекомендуется принимать:
μ% = 1÷2%, ξ = 0.3÷0.4 — для балок
μ% = 0.3÷0.6%, ξ = 0.1÷0.15 — для плит перекрытия
Требуемая площадь сечения арматуры:
Fa = M/η×h0×Ra = 4050/(0,925×0,16×36000000) = 0,00076 м2 = 7,6 см2.
На каждом метре монолитного перекрытия должно быть 5 стержней арматуры Alll d14мм (шаг 20 см). Основная рабочая арматура Аlll d14мм располагается параллельно короткой стороне дома (6м), центр ее сечения находится на расстоянии 4 см от низа перекрытия. 
Fa(факт)= 1,439×5=7,695см²
Fa ≤ Fa(факт)
7,6 см² < 0,7695 см²
Условие выполняется.

Коэффициент армирования —
μ = Fa/b×h, 
Процент армирования — μ% = 100×μ
μ% = 100×7,695/100×20 = 0,385 % 
0,385% находится в рекомендуемых пределах для плит (0,3-0,6). 
Проверка соблюдения граничных условий:
ξ ≤ ξR
ξR = ξ0/{1+σа/400(1+ξ0/1,1)}
ξ0 = a — 0.008Rпр,
где Rпр принимается в МПа; коэффициент а = 0.85 для тяжелого бетона и а = 0.8 для бетона на пористых заполнителях.
ξ0 = 0.85 — 0.008·11,5 = 0,758
ξR = ξ0/{1+σа/400(1+ξ0/1,1)}
ξR = 0.758/(1 + 365/400(1 + 0.758/1.1)) = 0,2984
0,15 < 0,2984
Граничное условие выполнено.

Проверка прочности по касательным напряжениям.

Так как арматуру в верхнем слое и поперечное армирование в монолитном перекрытии (хомуты или вертикальные стержни) мы не предусматривали, то следует проверить прочность монолитного перекрытия по касательным напряжениям :

Qmax ≤ 2.5×Rbt×b×ho ,
где Qmax — максимальное значение поперечной силы (определяется по эпюре поперечных сил). При нашей расчетной схеме Qmax = ql/2 = 900·6/2 = 2700 кг;
Rbt — расчетное сопротивление бетона растяжению //vk.com/wall-72891995_272, для класса бетона B20 Rbt = 9,18 кгс/см2;
2700 кг < 2,5×9,18×100×16= 36720 кг
Q ≤ 1.5Rbt×b×h0²/с 
или
Qmax ≤ 0.5Rbt×b×ho + 3ho×q ,
где Q — поперечная сила в конце наклонного сечения, начинающегося от опоры; значение с принимается не более сmax = 3ho. При нашей расчетной схеме значение Q на расстоянии 3×16 = 48 см или 0,48м от опоры составит Q = ql/2 — 0,48q = 2700 — 900·0,48= 2268 кг;
2268 кг < 1.5·9,18·100·16²/48 = 7344 кг

Условия прочности по касательным напряжениям выполняется и в этом случае расчёта поперечной арматуры по сечениям, наклонным к продольной оси, не требуется. Однако это вовсе не означает, что арматура в верхней части ж/б перекрытия и поперечная арматура совсем не нужны. Дело в том, что мы рассчитывали монолитную плиту перекрытия на равномерно распределенную нагрузку, в действительности же нагрузка далеко не всегда может рассматриваться как равномерно распределенная. При установке тяжёлых предметов и мебели на монолитную плиту перекрытия часть нагрузок будет сосредоточенными. В таких случаях и значение момента может быть несколько больше, но самое главное, возникают значительные местные напряжения. Арматура верхнего пояса и поперечная арматура перераспределяет внутренние напряжения, а потому использование арматуры в верхнем поясе и поперечной арматуры необходимо в плитах перекрытия, для которых все возможные нагрузки и их сочетания предусмотреть не возможно. Диаметр стержней арматуры верхнего пояса и поперечной арматуры можно выбрать меньше диаметра рабочей арматуры.

Читайте также пример расчёта деревянного перекрытия — //vk.com/wall-72891995_17
Пример расчёта стропильной системы — //vk.com/wall-72891995_96
Расчёт обрешетки — //vk.com/wall-72891995_213
Расчёт односкатной крыши — //vk.com/wall-72891995_256
Расчёт железобетонной перемычки — //vk.com/wall-72891995_272


Расчёт железобетонной перемычки.

Требуется рассчитать железобетонные перемычки над проёмами шириной 2 м, в доме из газобетона с шириной стен 0,3м. 
Железобетонные перемычки 10*7 см (высота*ширина) из бетона В20, над проемами внутри ряда блоков , с армированием А-lll d10мм в один стержень по центру перемычки. 
Площадь поперечного сечения арматуры Fа (факт) = 0,785 см² 

Расчёт.
М = qL²/8, 
где q — нагрузка от газобетона на перемычку, 
q = вес газобетона над перемычкой + вес перемычки 
q=(500кг/м³×0,4м×0,3м)+(2500кг/м³×0,1м×0,07м)= 77,5 кг/м. 
М = 77,5×2²/8 = 38,75 кг•м = 3875 кг•см 
h0 = 5 см (расстояние от арматуры до края растянутой зоны ж/б перемычки) 
Расчётное сопротивление сжатию для бетона класса В20 — Rпр (Rb) = 117 кгс/см2 (11,5 МПа). 
b — тоже значение что и в моих предыдущих расчетах в группе построим свой дом. //vk.com/wall-72891995_213 Расчетное сопротивление растяжению для арматуры класса А-III — Ra = 3600 кгс/см2 (355 МПа). 
А0 = M/b×h0²×Rпр = 9,6875/(0.07•0.05²•1150000) = 0,048 
По вспомогательной таблице к записи находим η = 0,975 и ξ = 0,05 (vk.com/postroim_svoi_dom так как мы не изменяли класс бетона и арматуры то условие ξ ≤ ξR соблюдено). 
Требуемая площадь сечения арматуры: 
Fa = M/η×h0×Ra = 38,75/(0,975×0,05×36000000) = 0,000022 м2 = 0,22 см2. 
Fa ≤ Fa(факт) 
0,22 < 0,785 
Условие выполняется. 

Коэффициент армирования — 
μ = Fa/b×h, 
Процент армирования — μ% = 100×μ 
μ% = 100×0,785/7×10 = 1,12% 

При наличии выше проёмов балок, плит перекрытий, стропил, необходим дополнительный расчёт армопоясов под ними. 

Читайте также пример расчёта деревянного перекрытия — //vk.com/wall-72891995_17
Пример расчёта стропильной системы — //vk.com/wall-72891995_96
Расчёт обрешетки — //vk.com/wall-72891995_213 Расчёт односкатной крыши — //vk.com/wall-72891995_256

#Расчет#железобетонной#перемычки
#Построим#свой#дом


Пример расчёта теплоизолированного ленточного фундамента (ТИЛФ.)

Исходные данные: 
Дом без теплоизоляции пола на ленточном железобетонном фундаменте в г. Пскове, Псковской обл. Нагрузка на 1 п.м фундаментной ленты определяется согласно СНиП 2.01.07. Требуется определить: 
— размеры вертикальной и горизонтальной теплоизоляции; 
— толщину грунтовой подушки. 
Исходные данные. В качестве теплоизолятора принимаем плиты экструдированного пенополистирола (ЭППС) ; в качестве материала для устройства грунтовой подушки и засыпки пазух котлована — отсев к/з. Грунты основания представлены супесями. 
Последовательность расчета.
1. Определение ИМ.
Указанный параметр находим по схематической карте. ИМ = 40000 градусо-часов.
2. Определение параметров вертикальной и горизонтальной теплоизоляции.
В таблице 2 индексу мороза ИМ = 40000 градусо-часов соответствуют следующие параметры теплоизоляции: 
— толщина вертикальной теплоизоляции δ v = 4,8 см; 
— толщина горизонтальной теплоизоляции по периметру здания δ h = 4 см; 
— толщина горизонтальной теплоизоляции на углах здания δ c = 5,3 м; 
— ширина теплоизоляционной юбки Dh= 0,3 м; 
— длина участков возле углов здания Lc = 1,2 м. 
3. Расчет толщины грунтовой подушки.
Толщина грунтовой подушки для отапливаемых зданий с температурой воздуха в помещениях зимой не ниже 17 °С (vk.com/wall-72891995_641) принимается 0,2 м. 
Ответ. На основе проведенного расчета окончательно принимаем: 
— толщину вертикальной теплоизоляции из плит ЭППС- 4,8 см; 
— толщину горизонтальной теплоизоляции по периметру здания из плит ЭППС — 4 см; 
— толщину горизонтальной изоляции на углах здания из плит ЭППС — 5,3 см; 
— ширину теплоизоляционной юбки — 0,3 м; 
— длину участков возле углов здания с усиленной теплоизоляцией — 1,2 м; 
— толщину грунтовой подушки — 0,2 м. 
При этом глубина котлована под ТФМЗ составит: 0,4 м +0,2 м = 0,6 м. 

#Пример#расчета#теплоизолированного#мелкозаглубленного#ленточного#фундамента
#Построим#свой#дом